Chess in school can improve math ability? Differences between instructor training and teacher training from an experiment in Italian primary schools.



Roberto Trinchero *roberto.trinchero*@unito.it Alessandro Dominici *info*@europechesspromotion.org Giovanni Sala *achi56*@libero.it

Department of Philosophy and Education University of Turin - Italy

1

### Can Chess Improve Math Scores in primary school children?

- The implicit in the chess activities in school is the belief that skills acquired playing chess can transfer to other domains;
- Is this belief based on well-substantiated evidence?;

 Italian research 2006-2012 results → A basic in-presence Chess course of 30 hours can improve specific basic Math ability.

Gobet F., Campitelli G. (2006), Educational benefits of chess instruction. A critical review, http://people.brunel.ac.uk/~hsstffg/preprints/chess\_and\_education.pdf Trinchero R. (2012), Gli scacchi, un gioco per crescere. Sei anni di sperimentazione nella scuola primaria, Milano, FrancoAngeli.

## Can Chess improve Math Literacy, as defined by Oecd-Pisa?

- Italian research 2012-2013 demonstrates a correlation between chess training (performed by FSI Chess instructors) and the score obtained on a subset of Oecd-Pisa math items;
- The gain in math scores is proportional to the time spent in the chess course.

Trinchero R. (2013), *Can chess training improve Pisa scores in mathematics?*, Paris, Kasparov Chess Foundation Europe, http://www.kcfe.eu/sites/default/files/Trinchero\_KCFE.pdf

## The Math test



Seven Oecd-Pisa released item (selected to be faceable by 7-11 years-old pupils):

| Oecd-Pisa<br>item code | Math abilities involved                                                                                          | Oecd-Pisa<br>Estimated<br>difficulty | Analogy with chess ability                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|
| M145Q01                | Calculate the number of points on the opposite face of showed dice                                               | 478<br>(Level 2)                     | Calculate material advantage                                    |
| R040Q02                | Establish the profundity of a lake<br>integrating the information derived from<br>the text and from the graphics | 478<br>(Level 2)                     | Find relevant<br>information on a<br>chessboard                 |
| M520Q1A                | Calculate the minimum price of the self-<br>assembled skateboard                                                 | 496<br>(Level 3)                     | Calculate material advantage                                    |
| M806Q01                | Extrapolate a rule from given patterns and complete the sequence                                                 | 484<br>(Level 4)                     | Extrapolate checkmate<br>rule from chess<br>situation           |
| M510Q01T               | Calculate the number of possible combination for pizza ingredients                                               | 559<br>(Level 4)                     | Explore the possible<br>combination of moves<br>to checkmate    |
| M159Q05                | Recognize the shape of the track on the basis of the speed graph of a racing car                                 | 655<br>(Level 5)                     | Infer fact from a rule<br>(e.g. possible moves to<br>checkmate) |
| M266Q01                | Estimate the perimeter of fence shapes, finding analogies in geometric figures                                   | 687<br>(Level 6)                     | Find analogies in chessboard situations                         |

M145Q01

#### CAN Example of item (Level 2, easy) Question 1: CUBES

In this photograph you see six dice, labelled (a) to (f). For all dice there is a rule:

The total number of dots on two opposite faces of each die is always seven.



Write in each box the number of dots on the **bottom** face of the dice corresponding to the photograph.

#### An Example of item (Level 5, difficult)



Along which of these circuits was the car driven to produce the Speed graph shown above?



The same results can be obtained by means of chess training performed by school teacher?

- This question originates the present research (2013-2014);
- Starting problem: lack of trained chess instructors to do massive courses of Chess in Italian school.

## The research sample



1057 children aged from 7 to 11, attending primary schools in several provinces of Italy, subdivided in three randomly selected groups:

| Group             | Ν.  | Activities                                                                                                             |
|-------------------|-----|------------------------------------------------------------------------------------------------------------------------|
| G1 (Experimental) | 221 | Chess training with school teacher (several groups, from 6 to 30 hours in presence, not extra time) + CAT              |
| G2 (Experimental) | 402 | Chess training with FSI chess instructor<br>(several groups, from 10 to 25 hours in<br>presence, not extra time) + CAT |
| G3 (Control)      | 434 | Ordinary school activities                                                                                             |

CAT = Computer Assisted Training for Chess beginners (*www.europechesspromotion.org*)

FSI = Italian Chess Federation

## The research sample

- The experimental group G1 school teachers was entirely composed by schools involved in the CIS Towns project, done by FIDE, which in Italy initiated in 2013;
- Teacher training was done mainly via the internet, only in some cases in presence, with meetings, lasting a total of 5 hours;
- In addition to these meetings, all teachers have attended CAT, which required, on average, 8 hours to get to the end;
- We used the same teaching protocol in all groups.

## Starting hypoteses of the study

- Hypotesis 1: A blended (in-presence+online) basic Chess course hold by a trained class teacher can improve Oecd-Pisa Math Scores in children of 7-11 age;
- Hypotesis 2: The improvement promoted by a trained class teacher is not statistically different from the improvement promoted by FSI chess instructor.

Roberto Trinchero - Department of Philosophy and Education - University of Turin - Italy

## The Experimental Design: 3group test-retest



Hypotesis 1 is corroborated if *Change(G1)>Change(G3)* Hypotesis 2 is corroborated if *Change (G1)>Change(G2)* 

## Score gain in mathematic ability: General results

|                        | Initial score |          | Gain | Gain                                                                         |
|------------------------|---------------|----------|------|------------------------------------------------------------------------------|
| Groups                 | Mean          | St. dev. | Mean | Sign. (Anova)                                                                |
| G1 (Exp – Teachers)    | 1.54          | 1.15     | 0.21 | Not significantly better than G3                                             |
| G2 (Exp – Instructors) | 1.38          | 1.14     | 0.56 | Significantly better than<br>G1 ( $p \le 0.01$ ) and G3<br>( $p \le 0.001$ ) |
| G3 (Control)           | 1.65          | 1.25     | 0.13 | -                                                                            |

There is a little but significant **increase** of Math scores in **Instructors** Experimental Group (0,56 vs a maximum of 7)  $\rightarrow$  chess training with FSI instructor has an Effect Size (Cohen's d) on math ability of 0,46

**Teachers** Experimental Group shows **no significant increase**  $\rightarrow$  Hypoteses 1 and 2 are not corroborated by data.

## John Hattie (2009), Visible Learning

- A syntesis of more than 50000 studies (200 million of students) about factors that have an effect on scholastic achievement;
- Useful to compare the effect size of chess training on scholastic achievement with other factors' effect.



Hattie J. (2009), Visible Learning: A synthesis of over 800 meta-analyses relating to achievement, London, Routledge.

# Effect size of Chess training with Instructor on math abilities

Effect size is greater than the mean of the effect Effect Size= 0,46 (Cohen's d) size of factors considered Medium by Hattie 0.7 0.8 0.3 0.4 Teacher effects Negative Zone of desired effects Reverse effects

The hinge-point; average effect-size 0.4

#### Score gain in mathematics ability: G1 (Teachers) subgroups analysis

|                    | Pre-tes | t score  | Gain  | Sign. |
|--------------------|---------|----------|-------|-------|
| Subgroup           | Mean    | St. dev. |       |       |
| G1m3-4-10-1        | 1.86    | 1.38     | -0.43 | 0.105 |
| G1s3-20-1          | 1.55    | 1.21     | -0.28 | 0.341 |
| G1m4-20-1          | 1.53    | 1.02     | -0.06 | 0.848 |
| G1s4-20-1          | 1.65    | 1.06     | 0.11  | 0.750 |
| G1s5-17-4          | 2.24    | 0.97     | 0.17  | 0.548 |
| G1m3-6-1           | 1.43    | 1.21     | 0.19  | 0.446 |
| Whole G1           | 1.54    | 1.15     | 0.21  | -     |
| G1c3-10-1          | 1.38    | 0.82     | 0.37  | 0.142 |
| G1m4-10-1          | 1.33    | 1.32     | 0.43  | 0.143 |
| G1m3- <b>30</b> -1 | 1.23    | 1.11     | 0.63  | 0.031 |
| G1p3-12-1          | 0.93    | 0.83     | 0.64  | 0.082 |
| G1c4- <b>24</b> -1 | 1.45    | 1.15     | 0.8   | 0.008 |

Better results with a longer training (24 hours or more)

#### Score gain in mathematics ability: G2 (Instructors) subgroups analysis

|            | Pre-test score |          | Gain  | Sign. |
|------------|----------------|----------|-------|-------|
| Subgroup   | Mean           | St. dev. |       |       |
| G2g4-10-2  | 2.05           | 1.07     | -0.53 | 0.045 |
| G2d3-15-1  | 1.39           | 1.05     | 0.03  | 0.900 |
| G2a3-14-1  | 1.12           | 0.93     | 0.12  | 0.707 |
| G2u3-15-1  | 1.25           | 1.28     | 0.25  | 0.732 |
| G2g3-10-1  | 1.43           | 0.98     | 0.28  | 0.284 |
| G2c5-10-3  | 1.71           | 1.49     | 0.43  | 0.165 |
| G2a4-14-2  | 2.00           | 1.38     | 0.48  | 0.156 |
| G2uv4-15-1 | 1.00           | 1.09     | 0.54  | 0.011 |
| Whole G2   | 1.38           | 1.14     | 0.56  | -     |
| G2br4-13-1 | 1.34           | 1.10     | 0.63  | 0.017 |
| G2c3-14-1  | 1.00           | 0.89     | 0.67  | 0.006 |
| G2d4-15-1  | 2.13           | 1.30     | 0.74  | 0.022 |
| G2c4-14-1  | 1.54           | 1.10     | 0.8   | 0.000 |
| G2a2-25-1  | 0.95           | 0.99     | 0.81  | 0.000 |
| G2r5-15-2  | 1.96           | 1.22     | 0.85  | 0.018 |
| G2an3-22-1 | 0.85           | 0.59     | 1.5   | 0.000 |

Better results with a longer training (22 hours or more)

#### Score gain in Chess ability: Teacher training (G1) vs Instructor traning (G2)

|                        | Pre-test score |          | Gain | Gain<br>Sign. (Anova)                                                         |
|------------------------|----------------|----------|------|-------------------------------------------------------------------------------|
| Group                  | Mean           | St. dev. |      |                                                                               |
| G1 (Exp – Teachers)    | 1.52           | 3.40     | 4.51 | Significantly better than G3 (p <= 0.001 )                                    |
| G2 (Exp – Instructors) | 2.41           | 4.30     | 5.80 | Significantly better<br>than G1 ( $p \le 0.001$ )<br>and G3 ( $p \le 0.001$ ) |
| G3 (Control)           | 2.16           | 3.84     | 1.02 | -                                                                             |

Teacher training is effective to develop chess ability, but instructor training is better.

## Overall results: Teaching method makes the difference

- Chess training performed by chess instructor seems to promote the developing of metacognitive problem solving abilities in children (planning actions and selfreflection on their own strategies);
- Planning actions and self-reflection on their own strategies can become specific *habitus* that pupils transfer to other knowledge domains;
- Trained school teacher seems to not adopt the same strategies that the FSI instructor adopt;
- These results are compliant with results of previous Italian research (2006-2013).

## Main peculiarity of FSI Instructor method

#### **FSI Instructor**

Focus his/her activity on planning and evaluating strategies

Focus his/her activity on attention to the dynamic relationship between the pieces

Has specific experience on involving children to play

Provides immediate and rich feedback to pupils

Promotes exercise of high order skill

# Syntesis of italian research 2006-2012

R. Trinchero (2012), *Gli scacchi, un gioco per crescere. Sei anni di sperimentazione nella scuola primaria*, Milano, FrancoAngeli.

R. Trinchero (2012), *Chess, a* game to grow up with: a synthesis of six years of research, Milano, FrancoAngeli (the book has a chapter in English that summarize the research results).



## In progress...

- The Italian experience has lead to CASTLE Project 2014-2017;
- Financed by Erasmus Plus EU Programme;
- Aims:
  - Study and recover the gap FSI Instructorsschool teachers;
  - Experiment metacognitive problem solving teaching strategies in chess training for the children.



#### roberto.trinchero@unito.it info@europechesspromotion.org

## Presentation available on www.europechesspromotion.org